Fitting a linear-linear piecewise growth mixture model with unknown knots: A comparison of two common approaches to inference.

نویسندگان

  • Nidhi Kohli
  • John Hughes
  • Chun Wang
  • Cengiz Zopluoglu
  • Mark L Davison
چکیده

A linear-linear piecewise growth mixture model (PGMM) is appropriate for analyzing segmented (disjointed) change in individual behavior over time, where the data come from a mixture of 2 or more latent classes, and the underlying growth trajectories in the different segments of the developmental process within each latent class are linear. A PGMM allows the knot (change point), the time of transition from 1 phase (segment) to another, to be estimated (when it is not known a priori) along with the other model parameters. To assist researchers in deciding which estimation method is most advantageous for analyzing this kind of mixture data, the current research compares 2 popular approaches to inference for PGMMs: maximum likelihood (ML) via an expectation-maximization (EM) algorithm, and Markov chain Monte Carlo (MCMC) for Bayesian inference. Monte Carlo simulations were carried out to investigate and compare the ability of the 2 approaches to recover the true parameters in linear-linear PGMMs with unknown knots. The results show that MCMC for Bayesian inference outperformed ML via EM in nearly every simulation scenario. Real data examples are also presented, and the corresponding computer codes for model fitting are provided in the Appendix to aid practitioners who wish to apply this class of models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise Linear–Linear Latent Growth Mixture Models With Unknown Knots

Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear–linear latent growth mixture model (LGMM) for describing segmented change of individual behavior over time where the data co...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

The implications of piecewise linear process of normal accruals

The present study investigates whether the basic assumption in the Jones model, which normal accruals are a linear function of change in sales, is empirically valid. It also discusses and addresses the implications of the assumption violation in the earnings management detection tests. The research employs a sample of 2832 observations of the annual information of firms listed in Tehran Stock E...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Psychological methods

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015